The probability that planar loop-erased random walk uses a given edge
نویسندگان
چکیده
منابع مشابه
The probability that planar loop-erased random walk uses a given edge
We give a new proof of a result of Rick Kenyon that the probability that an edge in the middle of an n × n square is used in a loop-erased walk connecting opposites sides is of order n−3/4. We, in fact, improve the result by showing that this estimate is correct up to multiplicative constants.
متن کاملThe growth exponent for planar loop-erased random walk
We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R2.
متن کاملLoop-Erased Random Walk and Poisson Kernel on Planar Graphs
Lawler, Schramm and Werner showed that the scaling limit of the loop-erased random walk on Z2 is SLE2. We consider scaling limits of the loop-erasure of random walks on other planar graphs (graphs embedded into C so that edges do not cross one another). We show that if the scaling limit of the random walk is planar Brownian motion, then the scaling limit of its loop-erasure is SLE2. Our main co...
متن کاملScaling Limit of Loop-erased Random Walk
The loop-erased random walk (LERW) was first studied in 1980 by Lawler as an attempt to analyze self-avoiding walk (SAW) which provides a model for the growth of a linear polymer in a good solvent. The self-avoiding walk is simply a path on a lattice that does not visit the same site more than once. Proving things about the collection of all such paths is a formidable challenge to rigorous math...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2014
ISSN: 1083-589X
DOI: 10.1214/ecp.v19-2908